Adaptive Fuzzy Sliding Controller with Dynamic Compensation for Multi-Axis Machining
نویسندگان
چکیده
The precision of multi-axis machining is deeply influenced by the tracking error of multi-axis control system. Since the multi-axis machine tools have nonlinear and time-varying behaviors, it is difficult to establish an accurate dynamic model for multi-axis control system design. In this paper, a novel adaptive fuzzy sliding model controller with dynamic compensation is proposed to reduce tracking error and to improve precision of multi-axis machining. The major advantage of this approach is to achieve a high following speed without overshooting while maintaining a continuous CNC machine tool process. The adaptive fuzzy tuning rules are derived from a Lyapunov function to guarantee stability of the control system. The experimental results on GJ-110 show that the proposed control scheme effectively minimizes tracking errors of the CNC system with control performance surpassing that of a traditional PID controller.
منابع مشابه
Load Frequency Control in Power Systems Using Multi Objective Genetic Algorithm & Fuzzy Sliding Mode Control
This study proposes a combination of a fuzzy sliding mode controller (FSMC) with integral-proportion-Derivative switching surface based superconducting magnetic energy storage (SMES) and PID tuned by a multi-objective optimization algorithm to solve the load frequency control in power systems. The goal of design is to improve the dynamic response of power systems after load demand changes. In t...
متن کاملTrajectory tracking of under-actuated nonlinear dynamic robots: Adaptive fuzzy hierarchical terminal sliding-mode control
In recent years, underactuated nonlinear dynamic systems trajectory tracking, such as space robots and manipulators with structural flexibility, has become a major field of interest due to the complexity and high computational load of these systems. Hierarchical sliding mode control has been investigated recently for these systems; however, the instability phenomena will possibly occur, especia...
متن کاملAdaptive Sliding Mode Control of Multi-DG, Multi-Bus Grid-Connected Microgrid
This paper proposes a new adaptive controller for the robust control of a grid-connected multi-DG microgrid (MG) with the main aim of output active power and reactive power regulation as well as busbar voltage regulation of DGs. In addition, this paper proposes a simple systematic method for the dynamic analysis including the shunt and series faults that are assumed to occur in the MG. The pres...
متن کاملAdaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot
The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...
متن کاملDesign On-Line Tunable Gain Artificial Nonlinear Controller
One of the most important challenges in nonlinear, multi-input multi-output (MIMO) and time variant systems (e.g., robot manipulator) is designing a controller with acceptable performance. This paper focused on design a new artificial non linear controller with on line tunable gain applied in the robot manipulator. The sliding mode fuzzy controller (SMFC) was designed as 7 rules Mamdani’s infer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JSEA
دوره 2 شماره
صفحات -
تاریخ انتشار 2009